National Synchrotron Light Source II

XANES analysis

Denis Leshchev, ISS beamline scientist NSLS-II, BNL

XANES region

BROOKHAVEN

NATIONAL LABORATOR

NERGY

Office of

Science

Why does it look like this?

- Oxidation state
- Symmetry
- Bonding

What to do with a bunch of spectra

- Linear combination fitting
- Factor analysis

XANES: why does it look like this?

Edge position is sensitive to formal oxidation state

Fundamentals of XAFS, Matt Newville

Chem. Commun., 2015, 51, 5951--5954

BROOKHAVEN Science BROOKHAVEN

Edge position is sensitive to local structure

National Synchrotron Light Source II 🔳

Office of Science NATIONAL LABORATOR

Edge position is sensitive to the bonding

Both Ni(II), coordinated with 6 oxygen atoms NiO: Ni-O \sim 2.09 A Ni(OH)₂ \sim 2.07 A

Data: Akhil Tayal BROOKHAVEN NATIONAL LABORATORY

All Fe(III) compounds

J. Am. Chem. Soc., Vol. 119, No. 27, 1997

Edge position, bond lengths and scattering

- the simplest picture of XANES is of the electron escaping through a cage of neighboring atoms
- Hartree et al. (1934) proposed that at the principal maximum (white line), the interatomic distance R is one wavelength
- In ev Å units, E_~I 50/R²
- Simple, but qualitatively correct
- 1/r² scaling can be used to determine average nearest neighbor bond lengths from XANES alone.

MnO₄ planar cluster r=1.63,1.73,1.84,1.94Å feff8.2 SCF/FMS

Bunker, Interpreting XANES talk

XANES is sensitive to local crystal structure

Fe – bcc structure Co – hcp/fcc mix

Fe in Fe/Co thin film shows XANES similar to that of Co

Edge shape is sensitive to local symmetry

M.L. Baker et al. / Coordination Chemistry Reviews 345 (2017) 182–208

Journal of Photochemistry and Photobiology 11 (2022) 100132

Energy (eV)

CoPc

7740

CoPc-powder CoPc-DMF CoPc-pyridine

b)

 $1s \rightarrow 4p_{7}$

7720

Normalized µ (E)

0

7700

National Synchrotron Light Source II 🔳

CoPcPy₂

7760

Axial ligation

Pyridine

BROOKHAVEN

ENERGY

Office of

Science

Pre-edge features: quadruple allowed transitions

 Cu_2O , ZnO - d¹⁰ systems - do not have any pre-edge CuO - d⁹ system - has one!

Pre-edge features: effect of 4p/3d mixing

- Oh coordination has inversion symmetry – low mixing, quadruple only
- Td coordination 4p and 3dxy, xz, yz orbitals have the same symmetry – high mixing, intense pre-edge
- More pre-edge intensity -> more distortion from centrosymmetric geometry

Serena DeBeer, 2nd Penn State Bioinorganic Workshop, 2012 J. Am. Chem. Soc., Vol. 119, No. 27, 1997

Scientific Reports (2018) 8:8603

Office of Science **BROOKHAVEN** NATIONAL LABORATOR

Pre-edge features: electronic structure fingerprinting

Office of

Science

NERGY

BROOKHAVEN

ChemSusChem 2018, 11, 2421 – 2428

Pre-edge features: multiplet structure effects

Pre-edge & XANES: sensitivities

- Oxidation state
- Spin
- Multiplet structure
- Symmetry
- Bond lengths
- Covalency

Office of Science **BROOKHAVEN** NATIONAL LABORATORY

XANES analysis of spectral series

Linear combination fitting

- Take a set of spectra and fit them to the spectrum of interest
- Get composition of the sample!

NERGY

Science

What to do if you recorded 100 spectra

- Experiments often yield 10-100s of spectra
- Combinatorial analysis can be tedious with this amount of data
- Need for more general approach

A typical in situ dataset that users take home from ISS

General analysis workflow for large datasets

Some examples from ISS

	Applied Catalysis B: Environmental 284 (2021) 119787
	Contents lists available at ScienceDirect
	Applied Catalysis B: Environmental
ELSEVIER	journal homepage: www.elsevier.com/locate/apcatb
	hchev ^b , Eli Stavitski ^b , Mitchell Juneau ^a , Jane N. Agwara ^a ,
Marc D. Porosoff ^a , * Department of Chemical Engineering,	hchev ^b , Eli Stavitski ^b , Mitchell Juneau ^a , Jane N. Agwara ^a , ^{University} of Rochester, Rochester, NY, 14627, USA Brookhaven National Laboratory, Upton, NY, 11973, USA
Marc D. Porosoff ^a , * Department of Chemical Engineering,	University of Rochester, Rochester, NY, 14627, USA

R. Liu et al, Appl. Catal. B, 284 (2021), 119787

BROOKHAVEN

that is physically constrained, demonstrates two specific spectral components with associated, time-dependent concentrations. The bulk-film component tracks the stages of growth. The surface and interface components, present throughout the stages of growth, reveal a significant coverage of relatively isolated or loosely networked tetrahedrally coordinated Ti atomic motifs. Finally, spectral signatures for the intra-cycle growth kinetics are reconstructed at a time resolution of ~ 1 s and demonstrate that the transient Ti motifs on the growing surface stabilize within a few seconds of the Ti precursor pulse.

> X. Qu et al, Chem. Mater. (2021) DOI: 10.1021/acs.chemmater.0c04547

In situ study of Co/ZSM catalyst reduction

- Co is embedded in zeolite ZSM-5 framework
- The catalyst performance was tested against method of K impregnation for Si/Al = 200 ratio
 - Incipient Wetness Impregnation (IWI) synthesis
 - Ion Exchange (IE) synthesis
- What is the kinetics of reduction and what is the degree of reduction at the end of the process?

Overview of the IWI and IE datasets

- Both datasets qualitatively show the signs of reduction
- Complex multistage kinetics can be observed in both cases
- How do we analyze such datasets?

BROOKHAVE

Office of

Singular Value Decomposition

Components are sorted according to their significance

Picture: wikipedia

Singular Value Decomposition analysis of IE-200 dataset

National Synchrotron Light Source II 🔳

BROOKHAVEN

NATIONAL LABORATORY

Number of significant components: scree plot

EPARTMENT OF

IERGY

Office of

Science

BROOKHAVEN

Figure 8.12 Yamnuska, a mountain in the Canadian Rockies. Note how the steep mountain side gives ways to a gentler slope made up of scree, which is a material made of rock fragments weathered from the mountain. Kevin Lenz. This photo is licensed under the Creative Commons Attribution-Share Alike 2.5 Generic license.

XAFS for everyone

Number of significant components: autocorrelation

Office of

Science

BROOKHAVE

Autocorrelation: $C_i = \sum_{j} V_{i,j} V_{i,j-1}$

(Arbitrary) threshold: 0.8

Singular value decomposition: Application to analysis of experimental data Methods in Enzymology Volume 210, 1992, Pages 129-192

MCR-ALS algorithm

- This is an algorithm for retrieval of pure species-associated spectra
- ALS is the way to retrieve this spectra alternatively optimizing the spectra and concentration profiles using a set of constraints
- Successful convergence often depends on the initial guess of the spectra

MCR-ALS: component retrieval

BROOKHAVEN NATIONAL LABORATORY

MCR-ALS:

- IWI-200 dataset is successfully fitted using only non-negativity constraint
- IE-200 fitting was done with fixed metallic cobalt component and additional constraining of concentrations to be above 1.5% level improves the quality of retrieved spectra

In situ study of TiO2 thin film growth over ZnO nanowires – Project 2

- Atomic layer deposition (ALD) was used to make thin films of TiO2 over ZnO nanowires
- Ex situ measurements demonstrate that TiO₂ is highly amorphous with distinctly different XANES from crystallin TiO₂ with half of Ti⁴⁺ under-coordinated (CN=4-5)

In situ XANES reveals different ALD growth stages

- XANES spectra were recorded as a function of the ALD cycle
- ALD cycle: titaniumisopropoxide (TTIP) and water are alternately introduced into the chamber as short pulses (~0.5s) separated by 60s
- The XANES spectral series readily demonstrates a two-stage growth process

MCR-ALS analysis of the XANES data

- The initial guesses were taken from the start end end of the series
- Non-negativity constraint and an additional concentration smoothness constraint were introduced to
- The recovered spectra correspond to the bulk and surface signals. The surface signal pre-edge feature intensity closely resembles the 4-coordinated Ti⁴⁺ in both TTIP and Titanosilicate

Office of Science **BROOKHAVEN** NATIONAL LABORATORY

Spectral series analysis

- Provides insights into phase transitions, kinetics, etc
- PCA/SVD is a quick method to see how many components/species are in the spectral series
- MCR-ALS (NMF) can be used to extract components/concentration profiles
- Components can be analyzed using our XANES intuition and/or comparing with references

Office of Science **BROOKHAVEN** NATIONAL LABORATORY